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Microsatellite DNA Variation in Sandbar Sharks ( Carcharhiinus plumbeus) 
from the Gulf of Mexico and Mid-Atlantic Bight 

EDWARD J. HEIST AND JOHN R GOLD . 
Three polymorphic DNA microaatellite loci w q e  developed in tbe sandbar shark 

(Ca- plumbeus) and used to test the hypothesis that s b k s  from the mid- 
Atlantic Bight and weetern Gulf of Mexico comprise a single genetic stock. No 
si@cant differen- in microsatellite allele frequencies were detected, a finding 
consietent with the null hypothesis. Polymorphic miemsatellite loci appear to be 
scarce in d b a r  sharks relative to other hh  species. The tiwee loci examined in 
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TABLE 1. PCR PRIMERS DEVELOPED IN SANDBAR  HARKS ( ~ ~ h i n u s p ~ u r n b c u s )  AND ANNFALING TEMPERATORES 
USED TO AMPW PRODUCE. 

Annealing prime! 
Locus t@InperaNre onenmuon Primer sequence 

cpM 60c Forward 5'ACCAGCAGGCATCTCAAACA 3' 
Reverse 5' CTTTAGCTCCCGCATCAGAG 3' 

Cpb38 56 c Forward 5' TCCAAGCTGGGAATTGAAC 3' 
Rwerse . 5' CTGCCGAAAGAGTTGAAGG 3 ' 

1 Cp539 56 c Forward 5' TACCTGCCACAAAACCTGAC 3' 

Rwerse 5' GCCTl"TACAGATGCCAGTGA 3 ' 
I 

with addition of 60 pl 50% glycerol in water. 
Solutions were stored at -70 C until screening. 
A total of 2880 colonies was screened with the 
aid of a Beckman Biomek2000wo&ta&m-A 

- - - - - - - 

stainless steel 9tFpin replicator tool was used to 
simultaneously collect cells from each well of a 
microtiter plate and inoculate a nylon mem- 
brane (hybond) on top of a slab of the LB agar 
plus ampicillin. Each colony was spotted twice 
to screen for false positives. Following overnight 
incubation at 37 C, colonies were lysed, and 
DNA was fixed to the membrane following Sam- 
brook et al. (1989). Radiolabeled hybridization 
probe was prepared by labeling a mixture of re- 
petetive oligonucleotides [ (CA) ,, (a) IS, (KIT),, 
(CCT) ,, (GACA) ,I. Equimolar amounts of each 
oligonucleotide were combined into a single T4 
polynucleotide kinase reaction that exchanged 
the terminal phosphate group with r94P. Mem- 
branes were prehybridized for two hours and 
then hybridized with a radiolabeled probe over- 
night at 48 C. Dried membranes were autora- 
diographed for 36 h with intensifying screens. 
Positive colonies were retrieved from the library 
and grown in LB-AMP medium at 37 C over- 
night with gentle shaking. 

Positive clones were sequenced from both 
ends using standard MI3 sequencing primers 
on an IBI 373 or 377 automated sequencer. 
Primers for PCR within the region flanking the 

-- _~lepeatmatiwm-w~a@.& 
software package (W. Rychlik, Oligo 4.0 Macin- 
tosh, National Biosciences, Inc., Plymouth, MN, 
1992, unpubl.), and PCR was performed under 
a variety of conditions to optimize production 
of high yields of target sequence and minimize 
additional fragments. Once. appropriate PCR 
conditions were obtained, microsatellite loci 
were amplified from genomic DNA of 72 indi- 
vidual sharks. Alleles at individual shark loci 
were scored on denaturing polyauylamide gels. 
A known DNA sequence was used as a size stan- 
da'd. Genotypic frequencies at each microsat- 
ellite locus were analyzed for deviations from 

Hardy-Weinberg equilibrium by pooling d e  
genotypes ax-&applying the EXACP option of 
the HDYWBG step in the BIOW1.7 package 

_af-affd-fCrw.= 
of allele frequencies was tested using the ran- 
domization procedure of Roff and Bentzen 
(1989). 

Two measures of population structure were 
estimated: Weir and Cockerham's 8 (Weir and 
Cockerham, 1984), an unbiased estimator of 
Wright's F, (Wright, 1969), computed using Ar- 
lequin 1.1 (S. Schneider, J.-M. Kueffer, D. Roe* 
sli, and L. Excoffier, Arlequin: a software f ir  
population genetic data analysis, vers. 1.1, Ge- 
netics and Biometry Lab, Dept of Anthropolo- 
gy, University of Geneva, 1997, unpubl.) as de- 
scribed in Michalakis and Excoffier (1996); and 
Slatkin's R, (Slatkin, 1995), estimated using 
RST CALC (Goodman, 1997). R, considers the 
squared size differences between alleles and is 
more appropriate for loci that evolve via step 
wise mutations. Statistical sigmficance of 8 and 
& was assessed by random permutations (1000 
trials per compa&on) wid& the Arelquin 1.1 
and RST CALC. 

RESULTS AND DISCUSSION 

Of 2880 clones of sandbar shark DNA 
screened for microsatellites by probe-hybridiza- 

-&m feech&!werqm&befomi-~  
lite repeat motifs. Eighteen clones were fully se- 
quenced. All but one of the clones sequenced 
contained identifiable repeat motifs; three 
clones were duplicates. Of 14 clones that con- 
tained unique repeat motifs, 10 were (CA),, 
three were (GA),, and one was (GACA),. Be- 
cause many of the repeat motifs were either 
very short (fewer than five repeat units), close 
to the end of the cloned sequence (thus pre- 
cluding design of a suitable primer), or had 
very low levels of polymorphism, only three sets 
of PCR primers were used to score all individ- 
uals (Table I). Sequences of the clones, includ- 
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. TABLE 2. OBSERWD GENO'IWES (LENGTHS OF ALLELBS TABLE 3. P R O B A B I ~  OF HOMO GENE^ OF 

7 IN BASE PAIRS) AND EXPECTED HETEROZ- OF FREQUENCY, WEIR AND COC-'S @, AND SLATKIN'S 
MICROSATELUTE LOCI IN SANDBAR SHARKS ( CanhIrin- & OF POLWORPHIC M I C R O S A ~  LOU IN SANDBAR 

us pkv&kw). SHARKS ( Ca-w p1umhm.s). 

Locus &notpi? Atlantic Gulf Y, Locus P 8 %T 

CpdG 153/151 12 5 0.226 ql-6 0.394 -0.010 -0.008 
151/151 33 21 cpbs8 0.350 -0.006 -0.010 

Cp&38 sOl/sOl 42 25 0.067 Cpb39 0.713 0.018 0.008 

301/299 3 1 Total - 0.002 -0.003 

Cpb39 283/283 2 0 0.535 
283/281 8 3 
2831277 1 0 
281/281 33 22 

sharks cklected from locations as distant as Vi- 

281/277 1 1 ginia and Veracruz, Mexico. Furthermore, sand- 
bar sharks tagged in- the waters of New York 
have been recovered in Mexican waters (Casey 
and Kohler, 1991). 

ing repeat motifs, are available through e n -  Based on the small number of positive clones 
Bank (Accession Numbers AF06'7410, AF067411, detected in our screening of the sandbar shark 
and AFO67412). A fourth locus produced a sin- genomic library as compared to results in other 
gle observed heterozygote in 66 individuals fish species (Colburne et al., 1996; Brooker et 
screened (locus Cpl-34, GenBank Accession al., 1994), it may be that microsatellite loci are 
Number BF069503). rare in sharks- We are currently carrying out ex- 

Each polymorphic microsatellite locus po* periments to examine this issue further. Tech- 
sessed either two or three alleles; expected het- niques for producing "enriched" microsatellite 
erozygosities ranged from 0.068-0.535 (Table libraries where DNA fragments that contain r e  
2). Number of alleles and heterozygosity values peat motifs are selected prior to cloning have 
observed in sandbar sharks are far fewer and been described recently (Kijas et al., 1994; Wal- 
lower, respectively, than those observed in other bieser, 1995) and may prove useful on species 
fishes studied to date. Examples include bluegill with low microsatellite diversity. 
sunfish (Colburne et al., 1996); cod, rainbow The low microsatellite heteroaygosity in sand- 
trout, and Atlantic salmon (Brooker et al., bar sharks is concordant with levels of allozyme 
1994); and bluefin tuna (Bmughton and Gold, heterozygosity and mitochondria1 DNA varia- 
1997). However, heterozygosity observed here tion in a previous study (Heist et al., 1995). 
for the three microsatellite loci was higher than Sandbar sharks are a long-lived specie, individ- 
that observed by Heist et al. (1995) for allozyme uals do not mature until approximately 15 years 
loci where mean heterozygosity was 0.005. No of age (Sminkey and Musick, 1995). Low levels 
significant deviations from Hardy-Weinberg of genetic variation in long-lived organisms has 
equilibrium were detected, either within sam- been noted previously and has been hypothe- 
ples or in combined samples for any locus. No sized to be due to perhaps the slow pace of 
significant differences in allele fkequency were germ-line DNA replication or to low metabolic 
detected between sandbar shark from the mid- rates (Avise et al., 1992; Martin and Palumbi, 
Atlantic Bight and Gulf of Mexico. Tests of al- 1993). There is evidence that the "molecular 
lele' frequency homogeneity at each locus were clock" for mitochondrial DNA in sharks is slow 
nonsignificant (Table 3), as were values of 69 (P relative to other vertebrates (Martin et al., 
= 0.324) and 17, (P = 0.2'77). 1992). However, the low level of microsatellite 

Results of this study, the previous genetic variability observed in our study may be due to 
study of Heist et al. (1995), and tagging data the small number of uninterrupted repeats in 
(Casey and Kohter, 1991) corroborate the hy- the loa assayed. The cloned alleles of loci 
pothesis that sandbar sharks in the mid-Atlantic 6, Cpb88, and CpH9 p e s s e d  relatively low 
Bight and Gulf of Mexico waters comprise a sin- numbers of perfect repeat units (eight, six, and 
gle genetic subpopulation or stock. Although nine, respectively), and Weber (1990) observed 
Springer (1960) suggested that there are two that human microsatellites typically are not 
separate breeding areas for sandbar sharks in highly polymorphic unless they contain at least 
the weatern North Atlantic, results of this study 10 uninterrupted repeat units. Moreover, Shug 
and those of Heist et al. (1995) record no sig- et al. (1997) found that microsatellites with low 
nificant differences in allele kequencies for numbers of perfect repeat units in Drosophila 
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had low mutation rates. If allelic variation is en- 
tirely due to changes in the number of repeats 
in the longest uninterrupted motif, then the 
largest number of repeats observed in any sin- 
gle individual of sandbar sharks was eight, six, 
and 10, respectively, for loci Cpl-6, Cpb38, and 
Qb39. Heterozygosities at these three loci rank 
c6ncordantly with mean and maximum num- 
bers of repeats (i.e., QL39 > CfJ% > CpM8). 
In comparison, a microsatellite developed in 
blacktip shark (Carcharhinus limbatus) has a per- 
fect repeat length of 19 repeats in the cloned 
sequence, possesses at least 20 alleles, and has 
an expected heterozygosity of 0.88 in a sample- 
of 131 individuals (unpubl.). Because the black- 
tip shark has a very similar life history to the 
sandbar shark, we believe the low heterozygosity 
in sandbar shark microsatellites is a character- 
istic of these particular loci and is not represen- 
tative of carhcarhinid s h a r k    ow ever,-micre 
satellites were similarly rare in blacktip sharks, 
and most loci had few repeats, suggesting that 
polymorphic microsatellites in carcharhinid 
sharks occur at a low frequency relative to tel- 
eosts and mammals. 
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